An Experimental Study of Fractional Cooperation
in Wireless Mesh Networks

Anthony Calce, Nariman Farsad, and Andrew W. Eckford
Dept. of Computer Science and Engineering, York University
4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
E-mail: calce@cse.yorku.ca, nariman@cse.yorku.ca, aeckford @yorku.ca

Abstract—Fractional cooperation is a decentralized, low-
complexity wireless networking protocol in which nodes have
the ability to dynamically select a fraction of its resources to
commit to forwarding, and where sources may use more than
one relay to convey information to the destination. In this paper,
an implementation and a series of experiments are presented
to demonstrate the practical performance and effectiveness of
fractional cooperation. A low-complexity MAC layer protocol is
used, which employs fractional cooperation using LT codes in the
absence of central coordination. Experimental results from real-
world trials are given, which show that this protocol can maintain
a reasonable throughput when nodes are abruptly entering and
leaving, making it ideal for a dynamically changing system, such
as an ad-hoc network. The redundancy of information seen in
the network makes this scheme robust to unfavourable channel
conditions.

I. INTRODUCTION

With the prevalence of wireless networks and ever increas-
ing applications, the scale of wireless networks grows year by
year. Concurrently, the need for high-speed data transmission
also grows every year as the Internet becomes an essential part
of society. However, as the size of the wireless networks grow,
maintaining higher data rates becomes ever more challenging.
One solution to this problem is spreading the load across
different nodes in the network.

The nodes of wireless networks can be distributed over
wide areas, where multiple hops may be needed in order
for information to reach a destination. Cooperation [1], [2]
provides a possible solution to this problem by allowing each
node to assist its neighbours in transmitting information to
a data sink. The basic cooperative system consists of three
nodes: a source, a relay, and a destination. The relay can
employ various cooperative schemes such as decode-and-
forward [3] and demodulate-and-forward [4], [5], to assist the
source in transmitting its information bits to the destination.
Furthermore, where links are affected by fading, cooperation
can be used to increase the spatial diversity of the system.

In a large scale wireless network, there are multiple sources
and multiple relays, where each source node is typically in
radio range of more than one relay. Furthermore, in systems
such as wireless mesh networks (WMN) [6], each node can be
a source and a relay. When a traditional cooperative scheme
is employed, each source has a dedicated number of relay(s),
where each relay forwards all the source’s transmission bits.
However, relays might have their own information to transmit

to the destination or might be unwilling to dedicate all their
resources to relaying; furthermore, allocation of resources is
a difficult problem. To overcome this issue, fractional coop-
eration [7], [8] can be employed, where each relay node can
forward a fraction of the sources’ transmission bits. A related
fractional strategy in cellular networks was independently
proposed in [10], where mobiles are permitted to use multiple
base stations to increase throughput to cell-edge users for
multiple-input multiple-output (MIMO) systems.

In this work, we develop a low-complexity medium access
control (MAC) layer protocol, employing fractional coopera-
tion, and test it on practical sensor networking hardware in
real-world experiments. Our contributions in this work are as
follows:

o We implement our MAC layer protocol on Imote2 sensor
nodes, creating a WMN. To the best of our knowledge,
this is the first work where fractional cooperation is
implemented in a real wireless system. Compared to
simulations, real-world experiments are uncommon in the
wireless literature.

e Through experiments on our implemented WMN, we
show that the proposed protocol can reliably transmit
information over the network, even when each node in
the network relays a fraction of the source’s transmission,
and there is no centralized coordination of the fractions.

o Using the proposed protocol, nodes can reliably enter
and exit the network at any time. We also show that
when our protocol is employed, the throughput decreases
gracefully as relay nodes exit the network. This is in
contrast to a traditional cooperative system, where an
exodus of relay nodes can result in a sudden, precipitous
drop in throughput. Based on the obtained results we
conclude that fractional cooperation is suitable in large
scale networks where nodes enter and exit the network
constantly.

II. COMMUNICATION PROTOCOL
A. Fractional Cooperation

In fractional cooperation, each node selects a fraction o €
[0, 1], representing the fraction of any neighbour’s transmission
that it will relay; for example, if o = 0.5 and a neighbour
transmits a packet of 100 bits, then the relay will choose 50 of
those 100 bits for retransmission. The manner in which these

Source Packet

1
1
:
1
Relay 2 ' |
________ N 1 S,
! 1
x Vo bl ¢ b Coded Packet
1
Do |
! !
V! !
b : C !
. :
! !
! . ! Forwarded
oo @ Coded Packet
.
1
b e e e = =
3 Source 3

Fig. 1: A multiple relay system

bits are selected is explained below. Both the choice of « and
the identities of the bits to be relayed are made by the relay,
and not coordinated with other nodes (however, it is assumed
that the destination knows which symbols are selected). See
also [7], [8] for more details.

Since the relays are not coordinating the selection of frac-
tions, it is impossible to ensure that every source symbol is
ultimately selected for relaying. As a result, it is essential
to use an erasure-correcting code to “fill in the blanks” and
recover any symbols which were missed during the selection
process. The LT code [11] is used, as it has excellent decoding
performance and low encoding complexity (which is essential
for our hardware).

B. Relay Model

The main goal of this protocol is to achieve a low com-
plexity communication scheme which incorporates fractional
coded cooperation. In order to fulfill this requirement, all
nodes in the model communicate by broadcasting. A few nodes
are selected as sources, but all nodes (except the sink) have
the ability to behave as relays. A source cannot be its own
relay. Nodes in this system follow two rules:

o Source nodes transmit uncoded information packets.

o If a node receives an uncoded packet, it will select a
fraction « of the bits in the packet, use those bits to
create a coded packet (using an LT code), and broadcast
the coded packet to all its neighbours.

« If a node receives a coded packet, it will rebroadcast the
packet in its entirety without decoding or re-encoding.

A small example of this relay model is shown in Figure 1.
A source node broadcasts packet a which is seen by two
relays. Coded packets b and c are generated by these relays

and are broadcast. At this point, any relay which receives a
coded packet will forward it without any processing. Since
this is broadcast scheme, nodes may receive duplicate packets
throughout this process, for example, relay 1 forwarding
packet b back to relay 2. These transmission links have been
omitted from the figure for ease of viewing.

Since the nodes are unaware of the success of transmission,
or the location of the sink, we use a packet time to live
(TTL) (measured as a maximum number of hops) as a simple
means of preventing flooding. Furthermore, we assume that the
destination has knowledge of, but no control over, the identities
of source symbols that the nodes are selecting for relay. As
we will discuss below, this is equivalent to knowledge of the
LT code employed by each relay node; in practice, this is
implemented by making the destination aware of each relay’s
random number seed, which can be expressed compactly.

Due to the nature of the protocol, every source packet sent
will trigger the generation of a certain number of coded and
forwarded packets. A source packet consists of k£ symbols,
with [bits per symbol. Traffic can be expressed as a sum of
the number of source, coded, and forwarded packets generated
per unit time. Each one of the s sources will generate a packet
with size kl. For every source packet in the system, r coded
packets are generated with size akl. For every coded packet
in the system, » — 1 forwarded packets are generated with
size akl. We define the quantity ®, expressed in bits per
second (bps), to be the upper bound of traffic seen in the
channel provided all nodes are within range of each other,
and there is no interference between communication links.
Given s sources, 7 relays, and a source packet rate A expressed
in packets per second, let Ngsources Mcodeds aNd Mforwarded
represent the number of source bits, coded bits, and forwarded
bits generated per packet. Then ® is given as follows:

= (nsource + Ncoded + nforwarded)5>\
= ((kl) + r(akl) + r(akl)(r —1))sA (1)
= kl(1 + ar?®)s\

When source nodes are also allowed to relay, the above
equation becomes:

® = skl(1+a(r+s—1)%)A)

To further reduce unnecessary forwarding, each node is able
to cross-check packet id numbers against a buffer in order
to determine duplicates. This guarantees us that ® remains
constant for systems which require a large TTL.

C. Encoding and Decoding Process

This section describes the encoding/decoding process from
the generation of a source packet to its reconstruction at
the sink; for ease of implementation, the process is slightly
different from the LT codes found in the literature, in that
operations are performed symbol-wise.

The process begins when a source node broadcasts an
uncoded information packet in the network. Each relay node,
upon receiving an uncoded packet, will begin its encoding step.

Fig. 2: Experiment setup

Given k information symbols received, a relay will generate
|ak| LT coded symbols which are then encapsulated into a
coded packet and broadcast. In [11], an LT coded symbol is
generated as follows:

e A degree 1 < d < k is chosen for the encoding
symbol with some probability given by the robust solition
distribution [11].

o d symbols are chosen uniformly at random from the set of
k information symbols. This subset of symbols is referred
to as the neighbour set of the encoding symbol.

o The value of the encoding symbol is determined by per-
forming the symbol-wise exclusive-or (XOR) operation
between the value of each neighbour symbol.

Given distribution constants ¢ = 0.1, § = 0.01, and k& = 30,
the robust solition distribution is approximated as: P,(d =
1,2,3,4,5,6) = (0.13,0.26,0.10,0.05,0.04,0.42)

The decoder needs to be aware of both the degree of a coded
symbol and its set of neighbour symbols. As noted in the
previous section, this is accomplished by using a random seed
in the encoding process which is utilized by a pseudorandom
generator at the decoder to reproduce the exact distributions
used in the encoding process.

Upon receiving a coded packet, the sink will recreate the
degree and neighbour set of each coded symbol (as seen in
columns 3 and 4 of Table I). The sink handles the decoding of
packets individually such that all coded symbols are analyzed
before moving on to the next coded packet.

A symbol is considered decoded when its degree is equal
to one (since there is only one neighbour symbol x < k, the
value of the code is equal to the z*" information symbol).
Once all degree one symbols are handled, the algorithm tries
to reduce the degree of every other symbol to one. This is
done by comparing already decoded information symbols to

1000~

— *— Source Transmissions
Decoded Packets at the Sink
—<— Coded Packets at the Sink

—k— Total Traffic at the Sink

900H

Throughput (bps)

0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9
Relay Ratio o

Fig. 3: Plot illustrating the decoding efficiency for varying «
values

TABLE I: Sink processing of coded packets generated in a
one-source, two-relay system

Information Symbol
[23] 11 [230] 92|

Coded Symbol x
[édy [seed [92 [28 [11]

Coded Symbol y
[dda | seed [186 | 166 | 177 |

Code Symbol Processing

Neighbour Decode_d
Symbol | Degree S Value Information
et
Symbol
1 1 {4} 92 (,,.,92)
idy 2 2 {1,2} 28 (,,.92)
(,11,.,92)
3 2} 1 (23,11, ,92)
1 2 1247 87 (23,11, .92)
ida 2 4 {1,234} 166 (23,11,230,92)
3 3 {2,3.4} 177 unused

the neighbour set and observing if that symbol is an element
of it. If so, a XOR operation is performed between the value
of the coded symbol and the decoded information symbol, the
element is removed from the neighbour set, and the degree
is reduced by one. This process is repeated until the source
message is fully reconstructed.

A short example of this is seen in Table I; this example
assumes o = 0.75 and k = 4. The source analyzes symbols
id1(1,2,3) and determines that symbols 1 and 3 can be
automatically decoded. It then cross-references the second
decoded information symbol with coded symbol 2 to retrieve
information symbol 1. It then continues to process symbols
id2(1,2,3) and following the same procedure, manages to
decode the information packet. Since the packet was decoded
after analyzing symbol 2, all subsequent symbols and coded
packets received are discarded (this includes packets received
by the forwarding process).

—— Source Transmissions
Decoded Packets at the Sink

—<— Coded Packets at the Sink
—%— Total Traffic at the Sink

Throughput (bps)

3000

—— Source Transmissions
Decoded Packets at the Sink

—<— Coded Packets at the Sink

2soo+ . —— Total Traffic at the Sink
2000]}

2

&

2 1500

=3

g

£
1000]

*

50017

I I I I I h
1000 1200 1400 1600 1800 2000

Time Elapsed (s)

0 2(")0 4(‘)0 6(‘]0 860
Fig. 4: One source transmitting to four initial relays, one relay
being shutoff every 500s.

D. Limitations

The sink node experiences a performance penalty if the
number of information symbols £ is large. The main con-
tributing factor to this problem is that the decoding algorithm
in this model was designed in a recursive fashion. It was
shown in [11] that the decoding step runs in linearithmic
time. Due to the simplicity of the communication protocol,
large traffic is seen at the sink if there are too many nodes
in close proximity. Under these conditions, this model suffers
from channel saturation.

III. EXPERIMENTS

This section describes the implementation of our protocol
using Imote2 [12] sensor nodes which are factory configured
to run Microsoft .NET Micro Framework 2.0 and are pro-
grammed with the C# language. Figure 2 displays a setup
used during experimentation.

A. Encoding and Decoding Simulation

A simulation of the encoding/decoding process was per-
formed and it was shown that over 5000 trials, given an
information packet consisting of & symbols and constants ¢
and 4, a reception overhead of about 60% was observed. That
is to say, the decoder would need to see 1.6k coded symbols
on average to successfully complete a single decode. Given
o = 0.5, that would equate to 3.2 coded packets.

B. Results

In this context, the primary features of fractional coopera-
tion are robustness, fairness, an increase in transmission range,
and the absence of central coordination. Four experiments
were designed to test these aspects of our protocol.

A sensitivity analysis was first done on « to determine what
effect it would have to total throughput seen at the sink. Figure
3 describes these results. Each data point was generated using
a single source transmitting to three relays for 200s. Increasing
« results in a trade-off between higher decoding efficiency and
extra traffic.

I I I I I I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time Elapsed (s)

Fig. 5: Three sources transmitting to six initial relays, one
relay being shutoff every 500s

TABLE II: Parameters used in experiments

Parameters
Information symbols, £ | 30
Symbol length, {
Relay ratio, « 0.5
Source send rate, A 0.5 packets per second

The next experiment is set up using five nodes; one acting
as the sink, one as the source, and four as dedicated relays.
Nodes are positioned such that they are all within range of
each other. During the course of the experiment, one relay
node is shutoff every 500s. This experiment is designed to
show that the protocol is robust to relays leaving the system.
For simplicity, we chose « to be the same for all relays. The
results are divided into 20s time buckets, and are observed
over 2000s in Figure 4.

As relays are dropped from the system, the sink node
experiences a decrease in the amount of coded packets it
receives, which results in a reduction of decoding efficiency.
The traffic seen at the sink is consistent with Equation 2. For
every source packet sent, there are r coded packets generated
(assuming all relays are within range of the source). The
simulation in Section III-A tells us that under the system
parameters, an average of 3.2 coded packets are required to
successfully decode. Since there are four relays present at the
start of the experiment, we can expect to reach close to 100%
decoding efficiency during this period.

The third experiment mimics the previous in all aspects,
except there are three sources broadcasting instead of one. As
previously mentioned in Section II-B, all nodes are able to
relay. As such, for every s sources in the network we have an
extra s — 1 relays. This test is designed to show the robustness
of the protocol when there are a large number of relays.

As Figure 5 illustrates, the presence of two extra source
nodes greatly increases sink traffic in our model; so much
so that it reaches channel saturation and traffic no longer
conforms to Equation 2. As we can see, the sink is decoding

Fig. 6: Six relays positioned over a field size of
180cmx300cm. A source node is moving farther away from
the sink destination.

at almost the same rate as the source is transmitting, even as
relays are being dropped. This shows that provided there are
enough relays in the system, an exodus of a few nodes will
not cause significant performance degradation.

The final experiment is set up as seen in Figure 6. Six
relay nodes were positioned over an area of about five square
meters. A source node is set up to broadcast for 200s at fixed
locations away from the sink. This test is intended to show
to that our protocol achieves a significant boost in range over
direct transmission.

As depicted in Figure 7, throughput of decoded packets at
the sink tends to gracefully falloff with distance. Our protocol
achieves over a three fold increase in transmission range over
a direct non-routed path. The extra redundancy of duplicated
packets allows us to employ this protocol in unfavourable
channel conditions and expect reasonable throughput.

IV. CONCLUSIONS

This paper has presented a low-complexity MAC layer
protocol which employs fractional cooperation using LT codes
in the absence of central coordination. A node has the ability
to dynamically select a relay ratio, which controls how much,
if any, of its resources it is willing to commit to forwarding.
As we have shown, a system with many relays is robust to
noisy channel conditions because there is a large amount of
duplicate information in the network. Due to the broadcast
nature of this protocol, packets are able to avoid forwarding
loops by cross-checking packet ids, thus making this scheme
practical for larger systems which have a high packet TTL.

Our approach is particularly useful for hardware with com-
plexity constraints, such as the iMote hardware often found in
sensor networks. Further, our results prove that this protocol
can maintain decent throughput when nodes abruptly enter or
exit the system, making this ideal for a dynamically changing
system such as an ad-hoc network.

For future work, we plan to perform further experiments on
a larger testbed once the decoding algorithm is restructured
to run more efficiently. This would allow us to increase the

1500 pc -

— *— Source Transmissions

Decoded Packets at the Sink
—<— Coded Packets at the Sink

—k— Total Traffic at the Sink

— = — Direct Uncoded Packets at the Sink

1000

Throughput (bps)

a
=3
S

200

250
Distance from the Sink (cm)

Fig. 7: Plot illustrating the benefits of fractional cooperation
over direct non-routed paths

number of information symbols sent by a source, resulting in
greater system throughput.

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8

—

[9

—

[10]

[11]

[12]

REFERENCES

A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity-
part I: system description,” IEEE Trans. Commun., vol. 51, pp. 1927—
1938, Nov. 2003.

A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity,
Part II: Implementation aspects and performance analysis,” IEEE Trans.
Commun., vol. 51, pp. 1939-1948, Nov. 2003.

A. Nosratinia, T. Hunter, and A. Hedayat, “Cooperative communication
in wireless networks,” IEEE Commun. Mag., vol. 42, no. 10, pp. 68-73,
October 2004.

D. Chen and J. N. Laneman, “Modulation and demodulation for cooper-
ative diversity in wireless systems,” IEEE Trans. on Wireless Commun.,
vol. 5, no. 7, pp. 1785-1794, Jul. 2006.

J. P. K. Chu and R. S. Adve, “Implementation of co-operative diversity
using message-passing in wireless sensor networks,” in Proc. IEEE
Globecom, St. Louis, MO, pp. 1167-1171, Dec. 2005.

Y. Yan et al., “Performance Analysis of IEEE802.11 Wireless Mesh
Networks,” IEEE Int. Conf. Commun., pp. 2547-2551, May 19-23 2008.
A.W. Eckford et al., “Low Complexity and Fractional Coded Cooper-
ation for Wireless Networks,” IEEE Trans. Wireless Commun., vol. 7,
pp. 1917-1929, May 2008.

A.W. Eckford et al., “Low-complexity strategies for cooperative com-
munications,” in Cooperative Wireless Commun., ed. Y. Zhang, H.-H.
Chen, and M. Guizani, CRC Press: Boca Raton, FL, pp. 53-72, 2009.

N. Farsad, A. W. Eckford , “Resource Allocation via Linear Program-
ming for Multi-Source, Multi-Relay Wireless Networks,” in Proc. IEEE
International Conference on Communications (ICC), pp.1-5, May 2010.
N. Kusashima et al., “Fractional Base Station Cooperation Cellular
Network,” 7th Int. Conf. on Inform., Commun. and Signal Processing,
pp. 1-5, 8-10, Dec. 2009.

M. Luby, “LT Codes,” in Proc. 43rd Symp. on Found. of Comp. Sci.,
pp. 271-280, Nov. 16-19 2002.

Imote?2: http://memsic.com/support/documentation/wireless-sensor-
networks/category/7-datasheets.html?download=139

